
北师大版高中数学选修 1 1 直线与直线的方程 单元测试题

1.			一个方向向量 ₫ 可以 B. (2,1)	-	,	D.	(1,2)
2. 点 $(0, -1)$ 到直线 $y = k(x+1)$ 距离的最大值为 $($							
	Α.	1	B. √2	C.	√3	D.	2
		面角坐标系中, , <i>d</i> 的最大值为			_	-2=	0 的距离. 当 <i>θ</i> ,m
	Α.	1	B. 2	C.	3	D.	4
4.			角最大的是() B. $2x-y+1=0$		x+y+1=0	D.	x+1=0
5.	点 A ([0, -1) 到直线	l: y = k(x+1) + 1	的距离	离的最大值为 ()
	Α.	1	B. √2	C.	√3	D.	√5

6. 如图,直线 l_1 , l_2 相交于点 O,点 P 是平面内的任意一点,若 X,Y 分别表示点 P 到 l_1 , l_2 的距离,则称 (X,Y) 为点 P 的"距离坐标". 下列说法正确的是 (

- A. 距离坐标为 (0,0) 的点有 1 个
- B. 距离坐标为 (0,1) 的点有 2 个
- C. 距离坐标为 (1,2) 的点有 4 个
- D. 距离坐标为 (x, x) 的点在一条直线上
- 7. 如图,在 \triangle ABC 中, $\angle ACB = 90^\circ$,AC = 2,BC = 1,点 A,C 分别在 X 轴、 Y 轴上,当点 A 在 X 轴上运动时,点 C 随之在 Y 轴上运动,在运动过程中,点 B 到原点 O 的最大距离是(

- A. $1+\sqrt{2}$

- B. √6 C. 3 D. √5

8. 已知点 A(3,0), B(0,3), 从点 P(0,2) 射出的光线经 X 轴反射到直线 AB 上,又经过直 线 AB 反射到 P 点,则光线所经过的路程为 (

- A. $2\sqrt{10}$
- B. 6 C. √26 D. 2√6

9. 已知点 $M(x_0, y_0)$ 在直线 3x + y + 2 = 0 上,且满足 $x_0 > y_0 - 1$,则 $\frac{y_0}{50}$ 的取值范围为

- A. $\left(-3, -\frac{1}{3}\right]$
- B. $\left(-\infty, -3\right) \cup \left(-\frac{1}{3}, +\infty\right)$ C. $\left(-\infty, -3\right] \cup \left(-\frac{1}{3}, +\infty\right)$

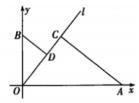
10. 已知直线 l: 2x + 3y - 12 = 0 与 x 轴, y 轴分别交于 A, B 两点, 直线 m 过 AB 的中点, 若直线 l, m 及 x 轴围成的三角形的面积为 6, 则直线 m 的方程为 (

- A. 2x 3y = 0
- B. 2x + 9y = 0
- C. 2x + 9y = 0 或 2x + 9y 24 = 0
- D. 2x-3y=0 或 2x+9y-24=0

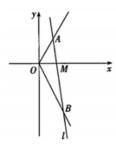
11. \triangle ABC 的顶点 A(4,3), AC 边上的中线所在直线的方程为 4x+13y-10=0, \angle ABC 的 平分线所在直线的方程为 x+2y-5=0,则 AC 边所在直线的方程为(

A. 2x-3y+1=0

B. x-8y+20=0


C. 3x-5y+3=0

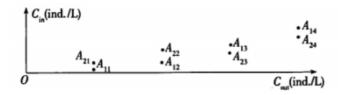
D. x-y-1=0


12. 已知 $a \in \mathbb{R}$,直线 I 过点 (1, a),且斜率为 a - 1,则 I 在 I 轴上的截距为____.

13. 在平面直角坐标系 xOy 中,P 是曲线 $y=x+\frac{4}{x}$ (x>0) 上的一个动点,则点 P 到直线 x+y=0 的距离的最小值是____.

- 14. 经过点 P(1,2) 的直线 I_1 : x-3y+10=0, I_2 : 2x+y-8=0 分别交于 P_1 , P_2 两点,且满足 $\overrightarrow{P_1P}=3\overrightarrow{PP_2}$,则直线 I 的方程为____.
- 15. 已知平行四边形 ABCD 的两对角线 AC, BD 交于点 O(-1,1), 其中 A(-2,0), B(1,1).
 - (1) 求点 D 的坐标及 AD 所在直线的方程;
 - (2) 求平行四边形 ABCD 的面积.
- 16. 如图,已知点 A(4,0), B(0,2), 直线 I 过原点,且 A, B 两点位于直线 I 的两侧,过 A, B 作直线 I 的垂线,分别交 I 于 C, D 两点.

- (1) 当 C, D 重合时, 求直线 I 的方程;
- (2) 当 $|AC| = 2\sqrt{3} |BD|$ 时,求线段 CD 的长.
- 17. 在平面直角坐标系中,已知射线 $y=\sqrt{3}x(x\geq 0)$ 与射线 $y=-\sqrt{3}x(x\geq 0)$,过点M(1,0) 作直线 I 分别交两射线于点 A,B (不同于原点 O).



- (1) 求当 | OA| + | OB| 取得最小值时,直线 | 的方程;
- (2) 求 $|MA|^2 + |MB|^2$ 的最小值.
- 18. 颗粒物过滤效率 η 是衡量口罩防护效果的一个重要指标,计算公式为 $\eta = \frac{C_{out} \cdot C_{out}}{C_{out}} \times 100\%$,其中 C_{out} 表示单位体积环境大气中含有的颗粒物数量(单位:ind./L), C_{in} 表示经口罩过滤后,单位体积气体中含有的颗粒物数量(单位:ind./L).某研究小组在相同的条件下,对两种不同类型口罩的颗粒物过滤效率分别进行了 4 次测试,测试结果如图所示.图中点 A_{ij} 的横坐标表示第 i 种口罩第 j 次测试时 C_{out} 的值,纵坐标表示第 i 种口罩第 j 次测试时 C_{in} 的值 $(i=1,2,\ j=1,2,\ 3,4)$.

该研究小组得到以下结论:

- ①在第 1 种口罩的 4 次测试中, 第 4 次测试时的颗粒物过滤效率最高;
- ②在第 2 种口罩的 4 次测试中, 第 3 次测试时的颗粒物过滤效率最高;
- ③在每次测试中,第 1 种口罩的颗粒物过滤效率都比第 2 种口罩的颗粒物过滤效率高;
- ④在第 3 次和第 4 次测试中,第 1 种口罩的颗粒物过滤效率都比第 2 种口罩的颗粒物过滤效率低.

其中,所有正确结论的序号是____.

答案

- 【答案】D 1.
- 2. 【答案】B
- 【答案】C 3.
- 【答案】A 4.
- 【答案】D 5.
- 【答案】A;B;C 6.
- 【答案】A 7.
- 【答案】C 8.
- 【答案】B 9.
- 10. 【答案】D
- 11. 【答案】B
- 12. 【答案】 1
- 13. 【答案】 4
- 14. 【答案】 2x-41y+80=0
- 15. 【答案】
 - (1) 设 D(x, y), 易知 O 是 BD 的中点,

所以
$$\begin{cases} \frac{x+1}{2} = -1\\ \frac{y+1}{2} = 1, \end{cases}$$

$$(x = -3)$$

$$\begin{cases} x = -3 \\ y = 1 \end{cases}$$

则 D(-3,1),

所以
$$k_{AD} = \frac{1.0}{.3+2} = -1.$$

所以 $k_{AD}=\frac{1-0}{-3+2}=-1$. 所以 AD 所在直线的方程为 $y-0=-1\times(x+2)$,即 x+y+2=0.

(2)
$$\oplus$$
 (1) \oplus (1) \oplus (2) \oplus (1) \oplus (2) \oplus (3) \oplus (3) \oplus (4) \oplus (5) \oplus (6) \oplus (7) \oplus (8) \oplus (9) \oplus (1) \oplus (1) \oplus (1) \oplus (1) \oplus (2) \oplus (3) \oplus (3) \oplus (4) \oplus (4) \oplus (5) \oplus (7) \oplus (7) \oplus (8) \oplus (8) \oplus (9) \oplus (9) \oplus (1) \oplus (1)

点 B 到直线 AD 的距离为 $\frac{11+1+2}{\sqrt{1^2+1^2}} = 2\sqrt{2}$,

所以平行四边形 ABCD 的面积为 $\sqrt{2} \times 2\sqrt{2} = 4$.

16. 【答案】

(1) 当 C, D 重合时, $AB \perp l$,

直线 AB 的斜率为 $k_{AB} = \frac{20}{04} = -\frac{1}{2}$,

所以直线 1 的斜率为 k=2,

因此,直线 1 的方程为 y=2x.

(2) 设直线 l 的方程为 kx-y=0, 易知 k>0,

$$|AC| = \frac{4k}{\sqrt{1+k^2}}, |BD| = \frac{2}{\sqrt{1+k^2}}.$$

因为
$$|AC| = 2\sqrt{3} |BD|$$
,

所以
$$\frac{4k}{\sqrt{1+k^2}} = \frac{4\sqrt{3}}{\sqrt{1+k^2}}$$
, 解得 $k = \sqrt{3}$,

所以
$$|AC| = 2\sqrt{3}$$
, $|BD| = 1$,

由勾股定理可得 $|OC| = \sqrt{|OA|^2 - |AC|^2} = 2$,

$$|OD| = \sqrt{|OB|^2 - |BD|^2} = \sqrt{3}$$

所以 $|CD| = |OC| - |OD| = 2 - \sqrt{3}$.

17. 【答案】

(1)
$$\partial A(a, \sqrt{3}a)$$
, $B(b, -\sqrt{3}b)(a, b>0)$.

因为 A, B, M 三点共线, 所以 \overrightarrow{MA} 与 \overrightarrow{MB} 共线.

因为
$$\overrightarrow{MA} = (a-1, \sqrt{3}a)$$
, $\overrightarrow{MB} = (b-1, -\sqrt{3}b)$,

所以
$$-\sqrt{3}b(a-1)-\sqrt{3}a(b-1)=0$$
,

得
$$a+b=2ab$$
, 即 $\frac{1}{a}+\frac{1}{b}=2$,

所以
$$|OA| + |OB| = 2a + 2b = (a+b) \cdot (\frac{1}{3} + \frac{1}{5}) = 2 + \frac{a}{5} + \frac{b}{3} \ge 4$$
,

当且仅当 a=b=1 时取等号,此时直线 l 的方程为 l l 1

$$|MA|^{2} + |MB|^{2}$$

$$= (a-1)^{2} + 3a^{2} + (b-1)^{2} + 3b^{2}$$

$$= 4(a^{2} + b^{2}) - 2(a+b) + 2$$

$$= 4(a+b)^{2} - 2(a+b) - 8ab + 2$$

$$= 4(a+b)^{2} - 6(a+b) + 2$$

$$= 4(a+b-\frac{3}{4})^{2} - \frac{1}{4},$$

因为 $a+b=2ab \le 2\left(\frac{a+b}{2}\right)^2$,

所以 $a+b \ge 2$,当且仅当 a=b=1 时取等号, 所以当 a=b=1 时, $|MA|^2 + |MB|^2$ 取最小值 6.

18. 【答案】②④

【解析】依题意, $\eta = \frac{C_{out} - C_{out}}{C_{out}} \times 100\% = \left(1 - \frac{C_{in}}{C_{out}}\right) \times 100\%$,知直线 OA_{ij} 的斜率 $k = \frac{C_{in}}{C_{out}}$ 越大,颗粒物过滤效率 η 越小.由题图分析如下:

在第 $_1$ 种口罩的 $_4$ 次测试中,四条直线 OA_{1j} (j=1,2,3,4) 中,直线 OA_{14} 的斜率最大,故 η 最小,第 $_4$ 次测试时的颗粒物过滤效率最低,故①错误;

在第 2 种口罩的 4 次测试中,四条直线 OA_{2j} (j=1,2,3,4) 中,直线 OA_{23} 的斜率最小,故 η 最大,第 3 次测试时的颗粒物过滤效率最高,故②正确;